

Test Report No:	WTH2102#1-2
Date:	06/01/2021
Testing of:	Single side hung projecting casement window
Tested to:	BS 6375-1:2015+A1:2016
Prepared for:	Nico Manufacturing Ltd

This report shall not be reproduced except in full, (and then only as permitted by copyright laws), without written approval from The Window Test House. Signatures used in this report are held on file. Testing to BS 6375-1:2015+A1:2016

CONTENTS

Details of test

Page No.

5

11

15

Authorisation 3

Page

2 of

- Test requested by 4
- Details of samples 6
- Conclusion of tests 7
- Test window drawing 8
- Air permeability tables (first test) 9
- Air permeability graphs (both tests) 10
- Watertightness
- Resistance to wind load 12
- Air permeability tables (second test)13Deflection & leakage diagrams14Picture of test window15

Test Report No. WTH2102#1-2	Page 3 of 15	
Testing of Single side hung projecting casement w	ndow	
Testing to BS 6375-1:2015+A1:2016		
AUTHORISATION		
Test completed by: D.Kury		
Assissted by: M.Currie		
Test witnessed by:		
Report produced by: D.Kury	Position: Senior Test Engineer	
Signature:		
Signature:		
Date: 26/01/2021		
For and on behalf of Nico Manufacturing Ltd Test	Laboratory	
Report authorised by: M. Franklin	Position: Laboratory Manager	
Signature:	i ositori. Laboratory Manager	
Signature:		
Date: 26/01/2021		
For and on behalf of Nico Manufacturing Ltd Test	Laboratory	
	Laboratory	
Date of issue of report 26/01/2021		
Nico Manufacturing Ltd. Test Laboratory		
Oxford Road		
Clacton-on-Sea		
Clacton-on-Sea		
Clacton-on-Sea ESSEX CO15 3TJ		
Clacton-on-Sea ESSEX	TESTING	

Test Report No. WTH2102#1-2

Testing of Single side hung projecting casement window

Testing to BS 6375-1:2015+A1:2016

TEST REQUESTED BY

Origin	of	test	request
--------	----	------	---------

Company Name	Nico Manufacturing Ltd
Company Address	104 Oxford Road Clacton on Sea Essex CO15 3TJ
Contact	Ian Harrison
Contact position	Sales Director

Page

4 of 15

Quotation Details

Quotation No.WTH2102Dated:05/01/2021

Test Report No. WTH2102#1-2

Testing of Single side hung projecting casement window

WTH

Testing to BS 6375-1:2015+A1:2016

DETAILS OF TEST

Description Model / type Make / Brand Any special requirements	Single side hung Projecting casement window Veka
Test Specification	BS 6375-1:2015+A1:2016 Performance of windows & doors.
Test Specification	Classification for operation and strength characteristics
Date sample received	18/04/2019
Date testing started	06/01/2021
Date testing finished	07/01/2021
Job No.	WTH2102
Any special requirements	

Page

5 of

15

Air permeability tests in accordance with BS EN 1026: 2016 - A series of positive and negative pressures was applied to the test sample and the air leakage through the sample was measured at each pressure step. Pressure steps applied are defined on the air permeability test sheets in this report.

Waterightness test in accordance with BS EN 1027: 2016 - A specified volume of water was constantly sprayed over the external face of the test sample while a positive pressure was applied, the positive pressure was increased at regular intervals. The test pressure, time and location of any water penetration was recorded. Pressure steps applied are defined on the watertightness test sheet in this report.

Resistance to wind load test in accordance with BS EN 12211: 2016 - Positive and negative pressures P1, were applied to the test sample and the deflection under load was measured, a series of 50 cycles of positive and negative pressure P2 were applied and any damage caused was noted and a safety test consisting of a single cycle of positive and negative pressures P3 was applied and any damage caused was noted P2 = 0.5P1, P3 = 1.5P1.

Values of these loads are defined on the Resistance to wind load test sheet in this report.

Test specimen details

Details of the samples construction and hardware components is based on information supplied by the test client, while these details have been checked and verified where possible WTH accepts no responsibility for the accuracy of details supplied.

Note : The test specimens were kept in the test laboratory for at least 12 hours at environmental conditions of between 10°C to 30°C, and 25% RH to 75% RH before each test was undertaken

The sample was mounted in a timber sub frame (nominal 100mm x 50mm in section) and sealed to the sub frame. The sample was mounted in the test rig without any twists or bends that might influence the test result.

Issued 04/02/20 Validated 04/02/2020 Effective: 04/02/2020 Authorised: M Franklin Rev 1 17/11/2020

Test Report No. WTH2102#1-2 Testing of Single side hung projecting casement window

Testing to BS 6375-1:2015+A1:2016

Page 6 of 15

DETAILS OF SAMPLE

Sample number	WTH1903A
Sample details	Single side hung projecting casement window
Fabricator	Consort Ltd
Material:	PVC-U
	Veka part nos;- 56mm Frame, part no 101160
	75mm sculptured sash, part no 103264
Finish	White gloss
	Lock - Nico Multilock, part no 9191020
Lock & keeps	
	Keeps - Nico cast zinc keeps, part no 9003 centre & 9103 top & bottom
Hinges &	Hinges - Nico standard 16" Hinge, part no 7740
protectors	
Handle	Winlock white inline nonlocking
Fixings	Hinges - 4.8 x 25mm pan head pierce point to sash and frame
	Lock and keeps - 4.3 x 25mm c'sk head pierce point to sash and frame Cavity wedges - 4.3 x 25mm c'sk head pierce point
Weather sealing	Co-extruded gaskets
Glass	28mm Double glazed unit. 4-20-4mm.
(or infill)	
Glazing system	Internally bead glazed with co-extruded gaskets.
	Shaped 28mm bead, part no 107.155
Sample dimensions	850mm (W) x 1300mm (H)
Additional information	Cavity wedges - Veka part no 9898 & 9905
	Run up block - Veka part no 109.380

 Test Report No.
 WTH2102#1-2
 Page

 Testing of
 Single side hung projecting casement window

Testing to BS 6375-1:2015+A1:2016

CONCLUSIONS OF TEST

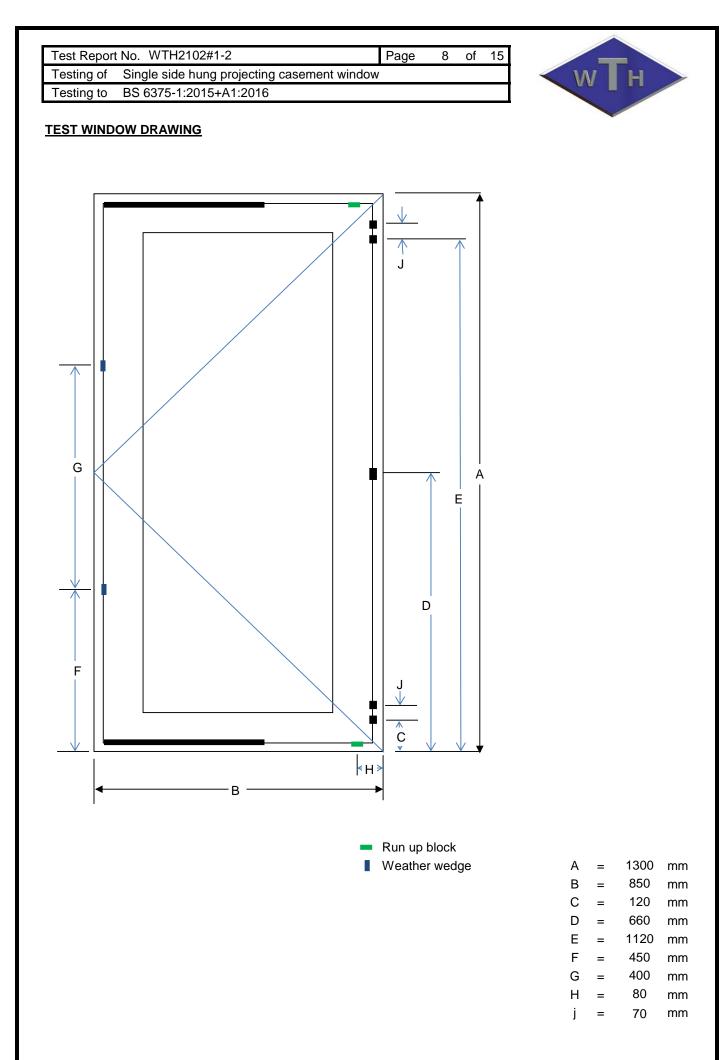
Standard	Test Description	Test result
BS EN 1026: 2016	Air permeability of test sample (first test)	Class 4
BS EN 1027: 2016	Watertightness test	Class 9A
BS EN 12211: 2016	7.2 Deflection test	Class C3
BS EN 12211: 2016	7.3 Repeated pressure test	Pass
BS EN 1026: 2016	Air permeability of test sample (second test)	Class 4
BS EN 12211: 2016	Safety test	Pass

7 of

15

WTH are accredited to BS 6375-1:2015 Performance of windows and doors, part 1 Classification for weathertightness and guidance on selection and specification.

This standard refers to a dated version of BS EN 1027:2000, however WTH are accredited to the dated version BS EN 1027:2016


The purpose of the revision of this european standard is to clarify the test method, the changes relate to definitions and descriptions, they do not affect the methodology of the test or the results obtained.

Due to the minimal leakage from the test sample it was not possible to comply with BS EN 1026:2016 section 7.2.3 which states that "In no case shall the air permeability of the test chamber exceed 30% of the overall air permeability of the test specimen and the test chamber"

Exposure category classification in accordance with BS 6375-1:2015+a1:2016 (clauses 6, 7 & 8) **Classification achieved:**

UK exposure	Air	permeability	Wa	atertightness	Re	sistance	to wind lo	ad
category	Class	Maximum test pressure (Pa)	Class	Maximum test pressure	Class	P1	P2	P3
1600	4	600	9A	600	C4	1600	800	2400

The results contained in this test report relate only to the particular sample/s tested as received and to the specific tests carried out as detailed within this report.

Test Report No.WTH2102#1-2Page9of15Testing ofSingle side hung projecting casement window555Testing toBS 6375-1:2015+A1:2016555

AIR PERMEABILITY: BS EN 1206: 2016

Closing condition of window	Latched
Window surfaces clean and dry	Yes
Window opened and closed before applying pressure pulses	Yes
Three positive pressure pulses applied	Yes

Sample No	WTH1903A	Temperature	19°C	Humidity	42%RH	Date	06/01/2021

Table 1 - Air permeability with positive pressure (adjusted for laboratory conditions)

Pressure	Air flow through	Air flow per unit area	Air flow per metre of
differential	test sample	of test sample	opening joints
Ра	m³/h	m³/h/m²	m³/h/m
50	0.00	0.00	0.00
100	0.00	0.00	0.00
150	0.00	0.00	0.00
200	0.00	0.00	0.00
250	0.00	0.00	0.00
300	0.51	0.47	0.13
450	-0.08	-0.07	-0.02
600	-0.04	-0.04	-0.01

Window opened and closed before applying pressure pulses	Yes
Three negative pressure pulses applied	Yes

Table 2 - Air permeability with negative pressure (adjusted for laboratory conditions)

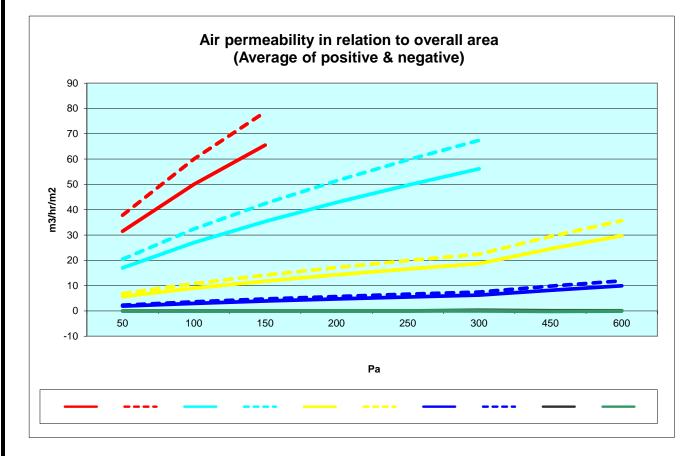
Pressure differential	Air flow through test sample	Air flow per unit area of test sample	Air flow per metre of opening joints
Pa	m ³ /h	m ³ /h/m ²	m ³ /h/m
50	0.00	0.00	0.00
100	0.00	0.00	0.00
150	0.00	0.00	0.00
200	0.00	0.00	0.00
250	0.00	0.00	0.00
300	0.00	0.00	0.00
450	0.25	0.23	0.07
600	0.24	0.22	0.06

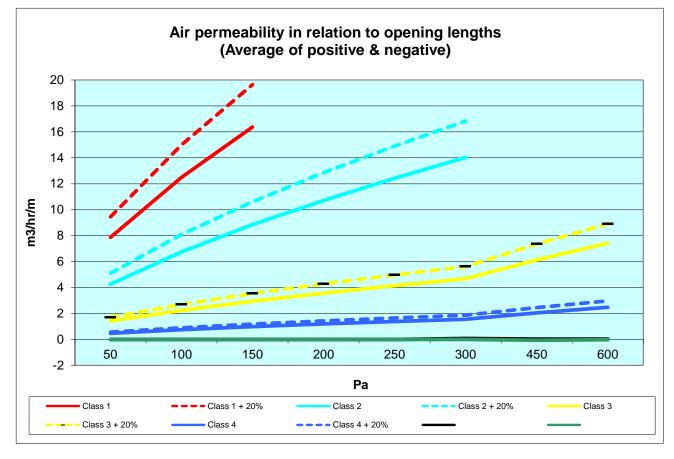
Table 3 - Air permeability averages with positive and negative pressures

Pressure	Air flow per average	Air flow average per
differential	unit area of test sample	metre of opening joints
Pa	m³/h/m²	m³/h/m
50	0.00	0.00
100	0.00	0.00
150	0.00	0.00
200	0.00	0.00
250	0.00	0.00
300	0.23	0.07
450	0.08	0.02
600	0.09	0.03

Total surface area of
test sample (m ²)
1.11

Total length of opening joints (m)


3.84


Issued 04/02/20 Validated 04/02/2020 Effective: 04/02/2020 Authorised: M Franklin Rev 1 17/11/2020

Test Repor	t No. WTH2102#1-2	Page	10	of	15
Testing of	Single side hung projecting casement window	1			
Testing to	BS 6375-1:2015+A1:2016				

AIR PERMEABILITY GRAPHS

Issued 04/02/20 <u>Validated 04/02/2020</u> Effective: 04/02/2020 Authorised: M Franklin Rev 1 17/11/2020

Test Report Testing of Testing to	No. WTH210 Single side h BS 6375-1:20	ung projec	ting casement	window	Page	11	of 15	w	Тн
Sample No	WTH1903	BA Te	emperature	19°C	H	umidity	39%RH	Date	07/01/2021
WATERTIGH	TNESS: BS I	EN 1027: 2	<u>:016</u>						
Natertightne	ess data (Te	st method	1A)						
Tato againe	 (13	ormourou							
	n test pressure sure pulses	e 60 66	()	ssure pul Pa whiche			e maximum tes	st pressure +	10% or
11035		00	500	a which	5001 13	une gre			
	-	condition o					ched		
Window on			an and dry		00		es es		
			applying pres pulses applied		69		es es		
Required air	Recorded air		Recorded	Wat			Position o		Time of leak
pressure	pressure	Spray duration	spray duration	Leal	<s< td=""><td>(Se</td><td>e also leakage</td><td>diagram)</td><td>min:sec</td></s<>	(Se	e also leakage	diagram)	min:sec
(Pa)		(mins)	duration						
0	0	15 +1/-0	15	No	one				
0	U	13 11/-0	15			_			
50 +/-5%	51	5 +1/-0	5	No	ne				
100 +/-5%	101	5 +1/-0	5	No	ne				
150 +/-5%	151	5 +1/-0	5	No	ne				
200 +/-5%	200	5 +1/-0	5	No	ne				
250 +/-5%	250	5 +1/-0	5	No	ne				
300 +/-5%	301	5 +1/-0	5	No	ne				
450 +/-5%	450	5 +1/-0	5	No	ne				
600 +/-5%	600	5 +1/-0	5	No	ne				
_aboratory C	Conditions					Cla	ssification		
			4040		Tes		Classif	ication	
Air p	ressure (mba	r)	1018		pres		Test	Test	Spec.
Laborat	tory air temp.	(°C)	19		(P	'a)	method A	method B	
	· · ·	、 /	-		, ,	0	1A	1B	15 min
Relati	ive humidity (9	%)	39		10	50 00	2A 3A	2B 3B	C1+5 min C2+5 min
					15		4A	4B	C2+5 min
N I	r of opposition = =		0		20		5A	5B	C4+5 min
Bamuri	r of spray noz	zies	2		25	50	6A	6B	C5+5 min
	flow rate /I DI	•			30	00	7A	7B	C6+5 min

Issued 04/02/20 Validated 04/02/2020 Effective: 04/02/2020 Authorised: M Franklin Rev 1 17/11/2020

450

600

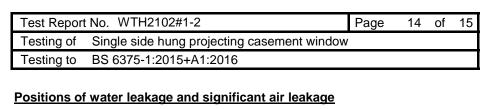
8A

9A

8B

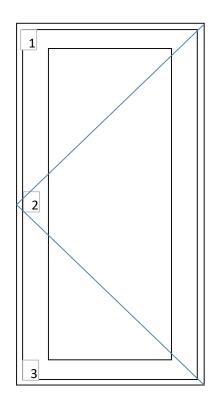
9B

C7+5 min


C8+5 min

4

Total flow rate (LPM)


	VTH2102#			Page 12	2 of 15		
		projecting cas			01/2021		
Testing to Weat	nertignthes	s test BS 6375	e Part 1	Date 07/	/01/2021		
Sample No W	TH1903A	Temperatu	ure 19°C	Humidit	y 40%RH	Date	07/01/2021
		remperate		ramut	J TO /01(11	Duit	01/01/2021
RESISTANCE TO V		D: BS EN 1221	11: 2016				
C	losing con	dition of windov	N	Lat	tched		
	0	ces clean and o		١	Yes		
Window opened a	and closed	before applying	g pressure pul	ses	Yes		
Three	positive pre	essure pulses a	applied		Yes		
Deflection test: Po	ositive pre				P1=	1600	Pa
Section being mea		D	eflection gaug	je readings (n	nm)	Measured	Relative
Hinge side of		1	2	3	Net	Length	deflection
3 pulses of	1760				deflection	_09	
Pre-test reading		20.0	20.0	20.0			
Max reading		20.9	22.1	20.8	4		
Net deflection und	er load	0.9	2.1	0.8	1.3	1180	1/ 944
Residual reading		20.1	20.0	20.0			
	_						
Deflection test: No					P1=	1600	Pa
Section being mea		D	eflection gaug	je readings (n		Measured	Relative
Hinge side of		1	2	3	Net	Length	deflection
3 pulses of	1760				deflection	, , , , , , , , , , , , , , , , , , ,	<u> </u>
Pre-test reading		20.0	20.0	20.0	4		
Max reading		18.5	16.6	18.9 -1.1	-2.1	1180	4/ 500
	and a P			- 1 1	-21	1180	1/ -560
Net deflection und	er load	-1.5	-3.4			1100	17 000
	er load	-1.5 20.0	-3.4 19.9	20.0	2.1	1100	1, 000
Net deflection und Residual reading		20.0	19.9	20.0	1		1, 000
Net deflection und			19.9	20.0	1		1, 000
Net deflection und Residual reading	Worst	20.0 case deflection	19.9	20.0	cation (
Net deflection und Residual reading Test conclusion: Cyclic repeated pr	Worst	20.0 case deflection	19.9 1/ -560	20.0 Classifi	cation (P2=		Ра
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/-	Worst	20.0 case deflection	19.9	20.0 Classifi	cation (P2=		
Net deflection und Residual reading Test conclusion: Cyclic repeated pr	Worst	20.0 case deflection	19.9 1/ -560	20.0 Classifi	cation (P2=		Ра
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/-	Worst	20.0 case deflection	19.9 1/ -560	20.0 Classifi	cation (P2=		Ра
Net deflection und Residual reading Test conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa	Worst o	20.0 case deflection st	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test	Worst o	20.0 case deflection	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass
Net deflection und Residual reading Test conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/-	Worst o	20.0 case deflection st	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Test conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/-	Worst o	20.0 case deflection st	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa	Worst of essure tes	20.0 case deflection st No	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Laboratory Condit	Worst of essure tes ions ire	20.0 case deflection st No Sample remain	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Laboratory Condit Air pressu	Worst of essure tes ions ire iture	20.0 case deflection st Sample remain 1018.0 m 19.0 °	19.9 1/ -560 o damage or fu	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa -aboratory Condit Air pressu Air tempera	Worst of essure tes ions ire iture	20.0 case deflection st No Sample remain 1018.0 m 19.0 °	19.9 1/ -560 b damage or function the closed with the closed with the closed with the closed with the closed with	20.0 Classific	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Saboratory Condit Air pressu Air tempera Relative hun	Worst of essure tes ions ire iture nidity	20.0 case deflection st No Sample remain 1018.0 m 19.0 °	19.9 1/ -560 b damage or function ned closed with hear	20.0 Classifie unctioning def	cation (P2= fects P3=	800 2400	Pa Pass Pa
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Safety Condit Air pressu Air tempera Relative hun	Worst of essure tes ions ire iture nidity	20.0 case deflection st No No 1018.0 m 19.0 c 39.0 c	19.9 1/ -560 b damage or function the closed with the closed with the closed with the closed with the closed with	20.0 Classifie unctioning def	cation P2= fects P3= coming detache	800 2400	Pa Pass Pa Pass
Net deflection und Residual reading Fest conclusion: 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Saboratory Condit Air pressu Air tempera Relative hun	Worst of essure tes ions ire iture nidity	20.0 case deflection st No Sample remain 1018.0 m 19.0 ° 39.0 °	19.9 1/ -560 b damage or function and closed with abar 2C % Deflect ass	20.0 Classifie unctioning def	cation P2= fects P3= coming detache	2400 ed	Pa Pass Pa Pass
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Safety test Air pressu Air pressu Air tempera Relative hun Classifications Wind I Class P1	Worst of essure test ions irre iture nidity oad P2 ot tested	20.0 case deflection st No No No No No No No No No No	19.9 1/ -560 b damage or function abar PC % Deflection Relanded	20.0 Classifie unctioning def n no parts been tion tive frontal eflection	cation (P2= fects P3= coming detache	2400 ed esistance to w Relatitive fror	Pa Pass Pa Pass ind load ntal defleection B C
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Safety test Air pressu Air pressu Air tempera Relative hun Class ifications Wind I Class P1	Worst of essure test ions ire iture nidity oad P2 ot tested 200	20.0 case deflection st No No No No No No No No No No	19.9 1/ -560 o damage or function o damage or function bar °C % Deflection ass A	20.0 Classifie unctioning def n no parts been tion tive frontal eflection s 1/150	cation P2= fects P3= coming detache	2400 ed esistance to w Relatitive fror	Pa Pass Pass Pass Ind load Intal defleection B C 31 C1
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Saboratory Condit Air pressu Air tempera Relative hum Classifications Wind I 0 1 400 2 800	Worst of essure test ions ire iture nidity oad P2 ot tested 200 400	20.0 case deflection st No Sample remain 1018.0 m 19.0 ° 39.0 ° Cl 600 1 200 1	19.9 1/ -560 o damage or function bed closed with abar °C % Deflect ass Rela de A ≤	20.0 Classifie unctioning def n no parts bed tion tive frontal effection 1/150 1/200	cation 0 P2= fects P3= coming detache Wind load class 1 2	2400 ed esistance to w Relatitive fror A A1 E	Pa Pass Pass Pass Ind load Ital defleection B C 31 C1 32 C2
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa aboratory Condit Air pressu Air tempera Relative hun Classifications Wind I Class P1 0 1 2 800	Worst of essure test ions irre iture nidity oad P2 ot tested 200 400 1 600	20.0 case deflection st No 1018.0 m 19.0 c 39.0 c 200 c Cl 600 c 1200 c 120	19.9 1/ -560 o damage or function bed closed with abar °C % Deflect ass Rela de A ≤	20.0 Classifie unctioning def n no parts been tion tive frontal eflection s 1/150	cation 0 P2= fects P3= coming detache Wind load class 1	2400 ed esistance to w Relatitive from A A1 E A2 E A3 E	Pa Pass Pass Pass Ind load Ital defleection B C 31 C1 32 C2 33 C3
Net deflection und Residual reading Fest conclusion: Cyclic repeated pr 50 cycles +/- at 800 Pa Safety test 1 cycle +/- at 2400 Pa Saboratory Condit Air pressu Air tempera Relative hum Classifications Wind I 0 1 400 2 800	Worst of essure test ions ire iture nidity oad P2 ot tested 200 400 1 600 1 800 2	20.0 case deflection st No Sample remain 1018.0 m 19.0 ° 39.0 ° Cl 600 1 200 1	19.9 1/ -560 o damage or function bed closed with abar °C % Deflect ass Rela de A ≤	20.0 Classifie unctioning def n no parts bed tion tive frontal effection 1/150 1/200	cation 0 P2= fects P3= coming detache Wind load class 1 2	esistance to w Relatitive fror A A1 E A3 E A4 E	Pa Pass Pass Pass Ind load Ital defleection B C 31 C1 32 C2

esting to BS 63	375-1:2015+A1:2016		
-			
ample No W	TH1903A Temperature	19°C Humidity 38	%RH Date 07/01/202
	Y: BS EN 1206: 2016		
	Closing condition of window	Latched	1
	ndow surfaces clean and dry	Yes	
Vindow opened a	and closed before applying pres	sure pulses Yes	
Three	positive pressure pulses applied	d Yes	
		djusted for laboratory conditions	
Pressure	Air flow through	Air flow per unit area	Air flow per metre of
differential	test sample	of test sample	opening joints
Pa	m³/h -0.01	m³/h/m² -0.01	m³/h/m 0.00
50 100	-0.01	-0.01	0.00
100 150	-0.01	-0.01	0.00
200	-0.01	-0.01	0.00
200 250	-0.01	-0.01	0.00
300	0.00	0.00	0.00
300 450	-0.62	-0.56	-0.16
600	-0.40	-0.37	-0.11
Vindow opened a	and closed before applying pres	sure pulses Yes	1
	and closed before applying pres negative pressure pulses applie		1
]
Three r	negative pressure pulses applie		s)
Three r	negative pressure pulses applie	d Yes	s) Air flow per metre of
Three r ole 2 - Air perme Pressure	negative pressure pulses applie ability with negative pressure (a	d Yes adjusted for laboratory condition	
Three r ole 2 - Air perme Pressure	negative pressure pulses applie ability with negative pressure (a Air flow through	d Yes adjusted for laboratory condition Air flow per unit area	Air flow per metre of
Three r ole 2 - Air perme Pressure differential	negative pressure pulses applie ability with negative pressure (a Air flow through test sample	d Yes adjusted for laboratory condition Air flow per unit area of test sample	Air flow per metre of opening joints
Three r ble 2 - Air perme Pressure differential Pa	negative pressure pulses applie ability with negative pressure (a Air flow through test sample m³/h	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m²	Air flow per metre of opening joints m³/h/m
Three r ole 2 - Air perme Pressure differential Pa 50	ability with negative pressure applie Air flow through test sample m³/h 0.00	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00	Air flow per metre of opening joints m³/h/m 0.00
Three r ole 2 - Air perme Pressure differential Pa 50 100	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00	Air flow per metre of opening joints m ³ /h/m 0.00 0.00
Three r Die 2 - Air perme Pressure differential Pa 50 100 150	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00
Three r pressure differential Pa 50 100 150 200	ability with negative pressure (a Air flow through test sample m³/h 0.00 0.00 0.00 0.00 0.00	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00
Three r pressure differential Pa 50 100 150 200 250	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00
Three r Pressure differential Pa 50 100 150 200 250 300	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Three r Pressure differential Pa 50 100 150 200 250 300 450 600	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r Pressure differential Pa 50 100 150 200 250 300 450 600	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r pressure differential Pa 50 100 150 200 250 300 450 600 Dele 3 - Air perme Pressure differential	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r Pressure differential Pa 50 100 150 200 250 300 450 600 Dele 3 - Air perme Pressure differential Pa	ability with negative pressure (a Air flow through test sample m³/h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme Pressure differential Pa 50	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r Pressure differential Pa 50 100 150 200 250 300 450 600 Dele 3 - Air perme Pressure differential Pa	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme Pressure differential Pa 50	ability with negative pressure (a Air flow through test sample m³/h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m³/h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.06 Total surface area test sample (m²) 1.11
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme Pressure differential Pa 50 100 150 250 300 450 600 ble 3 - Air perme	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m³/h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.06 Total surface area test sample (m²) 1.11
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme Pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme	ability with negative pressure (a Air flow through test sample m³/h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m³/h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Three r pressure differential Pa 50 100 150 200 250 300 450 600 ble 3 - Air perme differential Pa 50 100 150 200 150 200 150 200 150 200	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample m³/h/m² 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Air flow per metre of opening joints m³/h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.06 Total surface area test sample (m²) 1.11
Three rble 2 - Air permePressuredifferentialPa50100150200250300450600ble 3 - Air permeble 3 - Air permedifferentialPa50100150200250	ability with negative pressure (a Air flow through test sample m ³ /h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	d Yes adjusted for laboratory condition Air flow per unit area of test sample $m^3/h/m^2$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.21 add negative pressures Air flow average per metre of opening joints $m^3/h/m$ 0.00 0.	Air flow per metre of opening joints m ³ /h/m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Position of deflection measurement

Test Report	Page	15	of	15	
Testing of	Single side hung projecting casement window	1			
Testing to	BS 6375-1:2015+A1:2016				

PICTURE OF TEST WINDOW

END OF REPORT